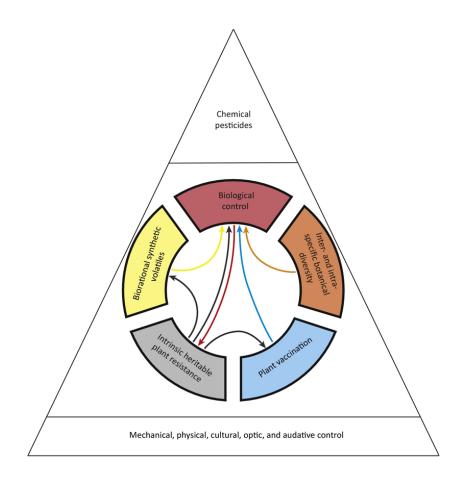
The Holistic Approach to Plant Pest Management

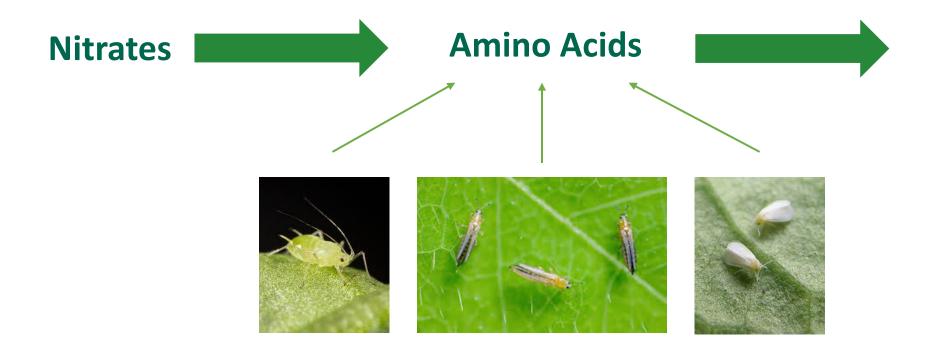
Index

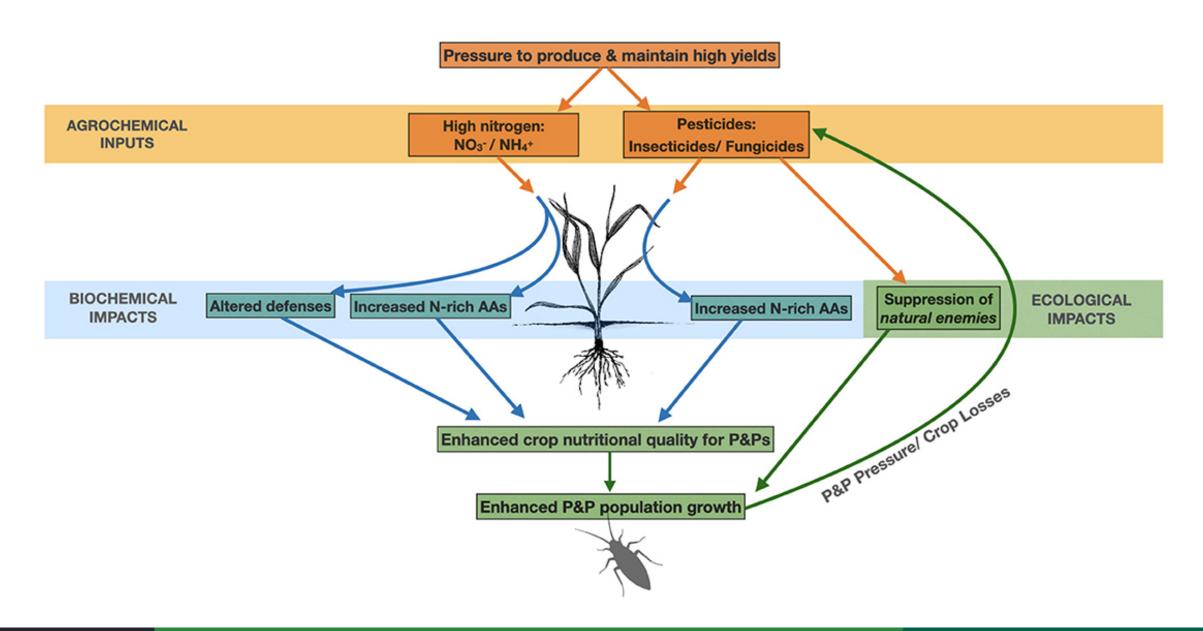
- IPM challenges
- Direct and indirect plant protection
- The theory of Trophobiosis
- Fertilisation and holistic pest management
- Beneficials and biopesticides
- Holistic IPM in practice



Lori-Leah Griffiths
Technical and Regulatory Specialist
Lori-Leah.Griffiths@fargro.co.uk

Direct and Indirect Plant Protection


We often focus on direct plant protection methods.


To form a holistic IPM system both indirect and direct methods must be considered.

Indirect Plant Protection

Indirect plant protection measures include environmental management and nutrition.

Holistic Fertilisation

- Organic nutrition is mineralised by microbes, feeding them to foster a healthy rhizosphere.
- Microbe metabolic speed aligns with plant metabolic speed, providing a steady supply of nutrition.

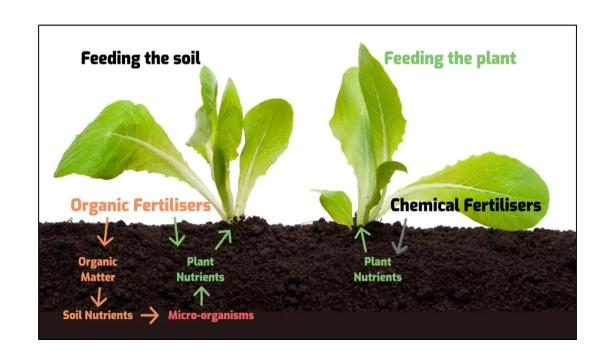


Table 3. Life-table parameters mean (\pm SEM) for the cotton aphid, *Aphis gossypii*, on cucumber as a function of nitrogen fertilization levels (ppm) (n=30).

	Nitrogen treatment (ppm)			
Parameters	90	110	150	190
Developmental time (days)	6.77 ± 0.11 a	6.88 ± 0.13 a	6.68 + 0.14 ab	6.38 + 0.11 b
Adult longevity (days)	$12.27 \pm 1.2 \text{ b}$	$14.36 \pm 1.22 a$	$14.95 \pm 1.6 a$	$15.00 \pm 1.43 a$
Total nymphs produced per adult aphid	58.7 + 5.15 b	$67.1 \pm 5.63 \text{ b}$	73.63 + 7.1 b	93.14 + 7.48 a
R_{o} ($\mathcal{P}/\mathcal{P}/\mathcal{P}$ /generation)	57.31 + 5.24 b	66.81 + 5.88 b	72.16 + 7.32 b	91.05 + 7.7 a
$r_m (??/?/day)$	$0.391 \pm 0.005 \text{ b}$	$0.398 \pm 0.007 \text{ b}$	$0.402 \pm 0.007 \text{ b}$	$0.458 \pm 0.005 a$
$\lambda \left(\frac{2}{2} \frac{1}{2} \frac{day}{day} \right)$	$1.449 \pm 0.0084 c$	$1.47 \pm 0.011 \text{ b}$	$1.478 \pm 0.011 \text{ b}$	$1.54 \pm 0.008 a$
T_c (day)	$10.929 \pm 0.213 a$	$10.82 \pm 0.135 a$	$10.96 \pm 0.159 a$	$10.47 \pm 0.168 a$
$d_t(day)$	$1.869 \pm 0.023 a$	$1.784 \pm 0.035 \text{ ab}$	$1.773 \pm 0.034 \text{ b}$	$1.61 \pm 0.021 c$

Note: r_{ms} intrinsic rate of increase; R_{o} , net reproductive rate; λ , finite rate of increase; T_{c} , mean generation time (days); d_{t} , doubling time (days). Within the same row, means followed by different letters indicate that they were significantly different (P = 0.05, LSD after one-way ANOVA).

Table 2. Effect of Different Rates of Nitrogen on Abundance of Thrips on Onions at Quetta, Pakistan, for 2002 and 2003 Combined

Nitrogen-phosphorous-potassium (kg/ha)	Thrips per plant	% increase
00-00-00	7.50 b	0.00
50-100-100	7.51 b	0.13
100-100-100	7.53 b	0.41
150-100-100	7.59 b	1.13
200-100-100	13.04 a	73.86
250-100-100	13.08 a	74.40

Means followed by the same letter in a column are not significantly different at P < 0.05 (LSD).

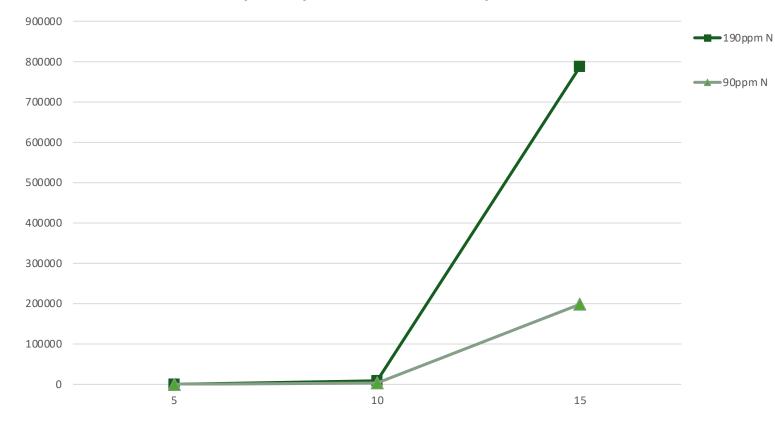


Table 4
Longevity and oviposition frequency of *T. vaporariorum* females grown on from plants fertilized with three nitrogen levels and allowed to oviposit on to plants fertilized with 140 ppm of nitrogen

Nitrogen level (ppm)	Mean female longevity ^a (d)	Mean oviposition frequency ^b (no.eggs/female/d)
308	45.7 a	3.9 a
140	45.1 a	3.7 a
84	40.2 a	3.2 b

N and Pest Development

Nitrogen: 90ppm (x59)

Number of Days	Number of Young
5	59
10	3,422
15	198,476
20	11,511,608
25	667,673,264
30	3.87 x 10 ¹⁰

Nitrogen: 190ppm (x93)

Number of Days	Number of Young
5	93
10	8,556
15	787,152
20	72,417,984
25	6,662,454,528
30	6.19 x 10 ¹¹

Number of Days

Number of Aphids

Holistic Growing

- By working with the plant and delivering a steady nutrient supply, the crop is stronger and less attractive to pests.
- With a reduced pest population, preventative pest management measures can be adopted - BCAs and Biopesticides.
- Direct pest management can be designed with complimentary products - Promotion of natural predators and parasitoids.
- Reduced chemical use means less impact on crop metabolism -Trophobiosis

Effective Pest and Disease Management

Fertiliser

Growing Media

Environment

Beneficials and Biopesticides

Programme Development:

- Crop
- Site surroundings
- Temperatures, weather conditions
- Pest emergence timings
- Crop development Canopy coverage, plant spacings, crawling vs. flying beneficials
- Application method Hand vs applicator, even distribution, nozzles, moisture
- Cost and practicality for the grower

Macrobiological Control

Cucumber Production

Macrobiological Controls Programme

Apply Thu/Fri

Species:	Phytoseiulus	A. cucumeris	A. californicus & A. swirskii	Encarsia formosa
Formulation:	Loose	Loose	Bugline Duo	Card
Target/Notes:	Spidermite	Thrips	Spidermite & Thrips / Exc. gaps between slabs	Whitefly

Crop Week	Phytoseiulus	A. cucumeris	A. californicus/A. swirskii	Encarsia formosa
1				
2	30 mites/slab	1,500 mites/slab		
3				1 card/5m ²
4			1 box (600m)/600 slabs	
5				1 card/10m ²
6				
7				1 card/10m ²
8				
	Repeat week 4-8 applications until crop end &			

Macrobiological Control

Cucumber Production

Apply Mon/Tue

Pr	oduct type:		Insecticide
A	plication type:	Spray	Spray

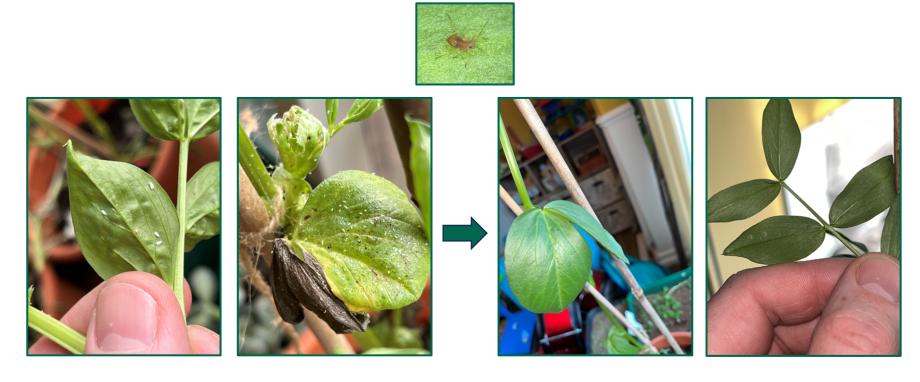
Crop Stage	Crop Week	SB Plant Invigorator	Naturalis-L
	1		•
Up To First Fruit	2	•	
Up To First Fruit	3		•
	4	•	
During Fruiting	5	•	
	6		
	7		•
	8		
	9	•	
	10		
		Repeat week 7-10 spray applicati	ons until crop end &

Product information	SB Plant Invigorator	Naturalis-L
MAPP number	N/A	17526
Application Rate	1L/ha*	3L/ha
Max. number of applications	N/A	5
Pre harvest Interval	N/A	N/A
Approval	N/A	On-label

^{*}presumed concentration of 1mL/L at water rate of 1000L/ha

Trials Work

Naturalis-L



Adult Sciarid flyer

Ants

Trials Work

SB Plant Invigorator

Beans – Whitefly and Aphid

Wildflowers

Research: Species compositions, structure, longevity, area size, edge effects.

Cost and practicality for the grower.

Holistic IPM

- Much focus is given to direct crop protection methods
 BCAs and biopesticides.
- We need to take a holistic view of the system, starting with the environment, growing media and fertilisation.
- Crop fertilisation Trophobiosis.
- Balanced nutrition leads to more preventative pest control - Reduced need for chemicals.
- Biological programme considerations.
- Working with the plant Harness and enhance natural processes.