The Holistic Approach to Substrates and Nutrition

fargro

Sean Whitworth Senior Growing Media and Fertiliser Specialist

sean.whitworth@fargro.co.uk

Movile: 07788 929 796

What is a holistic approach?

A holistic approach requires a 'systems' understanding:

- How does a plant work
- What does a plant need?
- What is the correct substrate for the plant?
- What fertiliser to use for the plant?
- How does the above help control pest and disease in the crop?
- All of the above working together

What is Holistic Growing?

<u>A systems-approach for agronomy:</u>

- The plant houses smaller ecosystems which sits within a wider ecosystem, all of which are in constant interaction with one another.
- A healthy plant works with each of these ecosystems to maximise their health.

Holistic growing applies the **systems-approach** to understand and utilise **crop natural processes** to **maximise health.**

Holistic Agronomic Approach

Use tools that complement one another to harness plants natural processes

- └→ Environment conditions
- \hookrightarrow Growing Media
- └→ Organic fertilisers
- \hookrightarrow Bio pesticides

Benefits include increased crop health and reduce input costs.

The plant microbiome

Above-ground:

The Rhizosphere

The rhizosphere is shaped by microbes in the surrounding growing media and host plant.

A healthy rhizosphere can help to:

- Mediate root and shoot growth
- Improve nutrient uptake and availability
- Induces disease resistance
- Exclude and combat root pathogens

Healthy plants will **manipulate** this community of microbes in their **favour** - Unhealthy plants won't

Dam and Bouwmeester, 2016.

Stage 3

The defences of the plant are overcome by the pathogen.

- The <u>first line</u> of defence is the microbiome.
- The <u>second line</u> of defence is plant structural and biochemical defences
- Both are reliant on *correct plant nutrition* to function properly

Growing Environment

•Use the right shading on the glasshouse.

•Use sensors to read light levels, humidity and moisture content in crops.

- •Use the data from the sensors to control irrigation, vents and screens.
- •Build programs/systems to what work.

How to choose the right mix

Considerations:

- Crop grown
- Indoors or outdoors
- Look at irrigation used on Nursery
- Fertilisation choice for mix to suit crop
- Cost

Requirements for growing media

- Provide anchorage
- Create environment that promotes crop health
- Facilitate gas exchange in rootzone
- Facilitate water uptake
- Facilitate nutrition delivery to the plant

Must be tailored to the specific needs of specific crops.

Growing media chemical profile

Raw material type	рН	EC (μS cm ⁻¹)	CEC (meq 100 cm ⁻³)	AFP (%)	Available water (%) at 5kPa	Dry bulk density (g cm ⁻³)
Coarse peat (10- 25 mm)	4.2 - 4.7	15.0 - 49.0	15.1 - 42.8	13.3 - 38.4	32.5 - 44.6	0.12 - 0.19
Fine peat (0-5 mm)	4.1 - 4.7	24.2 - 49.8	10.5 - 20.9	8.2 - 9.1	35.0 - 43.0	0.09 - 0.17
Bark (0-8 mm)	5.7 - 6.4	98.0 - 246.1	13.9 - 22.0	16.3 - 26.3	30.1 - 34.2	0.16 - 0.23
Potting bark <mark>(</mark> 5- 16 mm)	5.3 - 5.8	20.2 - 46.3	7.3 - 11.9	38.6 - 49.4	35.0 - 43.0	0.15 - 0.17
Buffered coir (0- 12 mm)	6.9 - 7.3	38.3 - 96.2	5.3 - 6.8	17.3 - 20.3	36.6 - 40.4	0.06 - 0.11
Green compost (0-10 mm)	7.5 - 8.2	456.6 - 1739.1	15.8 - 20.9	5.0 - 15.1	35.8 - 46.7	0.23 - 0.52
Wood fibre (all tested types ^a)	5.4 - 8.3	5.3 - 441.1	9.0 - 14.9	25.4 - 51.7	13.2 – 24.7	0.06 - 0.11
Vermiculite (superfine - medium)	8.0 - 9.8	18.7 - 36.7	3.0 - 9.7	11.9 - 40.2	34.4 - 41.6	0.10 - 0.13
Perlite (fine - coarse)	8.0 - 9.2	5.2 - 9.7	0.8 - 2.1	21.3 - 36.2	21.4 - 24.2	0.05 - 0.12

Plant Nutrient Availability According to Soil pH

We are seeing improved nutrient availability at higher pH in peat free compared to peat

Ingredients: Wood fibre

- AFP: High (25% 50%)
- WHC: Low
- AW: Low (37% 40%)
- pH: 4.4 6.0
- Buffering capacity: Low
- Cation Exchange Capacity: Low
- Electrical Conductivity: Low
- Microbial life: Low
- Considerations: locks up N in first 8-10 weeks

Ingredients: Coir

- AFP: Medium (17% 20%)
- WHC: High
- AW: High (37% 40%)
- pH: 6.0 7.3
- Buffering capacity: Low
- Cation Exchange Capacity: Low
- Electrical Conductivity: Low
- Microbial life: Low
- Considerations: high in K

Ingredients: Green compost

- AFP: Low (5% 15%)
- WHC: High
- AW: High (36% 47%)
- pH: 7.5 8.2
- Buffering capacity: Low
- Cation Exchange Capacity: Medium
- Electrical Conductivity: Very high
- Microbial life: High
- Considerations: Quality and properties can vary widely

Ingredients: Fine pine bark

- AFP: Medium (16% 26%)
- WHC: High
- AW: Medium (30% 34%)
- pH: 5.7 6.4
- Buffering capacity: Medium
- Cation Exchange Capacity: Medium
- Electrical Conductivity: Medium
- Microbial life: Low
- Considerations: locks up N in first 8-10 weeks

Ingredients: Clay

- Buffering capacity: High
- Cation Exchange Capacity: High
- Electrical Conductivity: Low
- Microbial life: Low

Mix design

- Wood fibre: Aeration
- **Coir**: Water availability
- **Green compost**: water availability, nutrient adsorption, soil biology
- Fine pine bark: good pH, aeration, some buffering capacity
- **Perlite**: aeration and soil structure
- Clay: Nutrient adsorption and pH buffering
- Wetting agent: improved water uptake and retention

Growing media has good aeration of small pores and good water holding capacity with sufficient acidity and CEC.

Difference in fertilisation of crops

General considerations

- More leaching in Peat Free mixes, different soil types
- Watering techniques require wetting Agents

Fertiliser choice

- Scope for granular organic fertiliser use (DCM)
- CRF type choice is important
- Liquid feed must be tailored to analysis

Nutrition

- Plants require a **slow**, **steady** amount of **low-level nutrition** to operate optimally.
- High levels of N will lead to a build-up of compounds in the leaf that act as a **food source for pathogens.**

Incorrect fertilisation will **disrupt plant processes** and limit their ability to mediate their **microbiome** and their natural **pathogen defences**

Achieving correct plant nutrition

- Plants apportion resources based on their recent environmental conditions.
- They require a small but constant amount of a complete nutrient package to operate optimally.
- Microbiomes also require feeding but they cannot metabolise mineral nutrients.

Source: Malhi et al. (2003)

Nutrition: Using organic fertilisers

- To be taken up by the plant, organic nutrients must first be **mineralised by microbes in the soil.**
- Microbe metabolic speed is aligned with plant metabolic speed, meaning nutrient release is well suited to plant growth.
- Conversely, mineral feeds **bypass** the soil biology and are not mediated by microbes.

DCM Organic Fertilisers

Made from natural raw materials: by-products of food industry

Reduced leaching and reduced chance of **root burn**

Reduced likelihood of pest & disease occurrence

What?

DCM Minigran organic fertilizers & soil improvers

Controlled organic release

Mixture of vegetable animal and mineral ingredients

Natural technology for plants and soil

Each ingredient has its own N-P-K content

Each carbon component is a feeding source for soil life

Mixture of vegetable, animal and mineral ingredients

Each carbon ingredient is a feeding source for soil life.

Potting soil + mineral fertiliser

Potting soil + Minigran fertiliser

Cyclamen 10cm crop

Ranunculus crop DCM Vs CRF

Less leaching

What is DCM Minigran Technology?

Each ingredient has its specific release

Efficient Controlled Organic Release

Each ingredient has it's specific release.

Uniform distribution

Holistic Agronomic Approach

Though many of the tools are organic, **holistic growing is not organic growing**.

Conventional products still have a place in the programmes. In holistic growing we try to simulate natural systems as much as possible, but we also appreciate a commercial growing facility is not a natural growing environment so sometimes conventional inputs are required to meet the demands of commercial crop production.

Integration of CRF's

- DCM gives comprehensive nutrition to crop for first 4-5 months
- This can be supplement with CRFs in longer term crops

Improved Trace Elements Release

Release of Trace Elements matches with NPK release

Smocote 5/NPK Smocote 5/Trace Elements

How to use CRF's

- Differing products have different nutrient and release profiles
- Important to select one that compliments organic or liquid feed correctly

Application Rates for Osmocote 5 and Osmocote Exact Standard

Recommended Rates gram per Litre	Release Pattern		Longevity	Light Feeding	Normal Feeding	Heavy Feeding
Deddine Diente	Osmocote 5	Osmocote Exact Standard	2 - 3m	1.5 - 2	2 - 3	3 - 4
Bedding Plants			3 - 4m	1.5 - 2	2 - 3	3 - 4
heavy feeding rate			5 - 6m	2 - 3	3 - 4	4 - 5
	S-curved BELEASE	Standard	8 - 9m	3 - 4	4 - 5	5 - 6
Pot Plants		Standard	3 - 4m	1.5 - 2	2 - 3	3 - 4
High K formulations available			5 - 6m	2 - 3	3 - 4	4 - 5
for certain crops			8 - 9m	3 - 4	4 - 5	5 - 6
		Standard	5 - 6m	2 - 3	3 - 4	4 - 5
Nursery Stock			8 - 9m	3 - 4	4 - 5	5 - 6
			12 - 14m	3 - 4	5 - 6	6 - 7
			16 - 18m	4 - 6	6 - 8	8 - 10
Perennials			5 - 6m	1 - 1.5	1.5 - 2	3
High K formulations available		Standard	8 - 9m	2	2.5	3.5
for compact growth/flowering			12 - 14m	2.5	3	4

These rates are a general guide. Contact your ICL Technical Area Sales Manager for specific crop rates. Recommendations powered by AngelaWeb 3.0

Analysis done to decide if liquid fertilisation is needed

	FERRING NURSERY							
Results		analysis	at EC 0,67	target	low	normal	high	
	рН	6,7	6,7	5,9				
mS/cm 25°C	EC	0,9	0,9	< 1,8		I.		
Cations	NH ₄	0,1	0,1	< 0,1				
mmoi/i	к	3,0	2,8	1,6				
	Na	1,8	1,8	< 3,5		· ·		
	Ca	0,9	0,8	1,2				
	Mg	0,4	0,4	0,5				
Anions	NO ₃	1,9	1,8	4,0				
mmoi/i	CI	1,8	1,8	< 3,5				
	s	1,4	1,3	0,8				
	нсоз	< 0,1	< 0,1					
	P	0,40	0,37	0,50	I			
Micro- nutrients µmol/l	Fe	11	11	10				
	Mn	0,6	0,6	2,0				
	Zn	2,5	2,5	2,0				
	в	13	13	10				
	Cu	0,6	0,6	0,7		D		
	Мо	0,2	0,2					
mmol/I	Si	0,18	0,18					
	K/Ca	3,3		1,3				

Original

Test code:

310

318749/006125053

Research-/ordernumber: Date sampling:

08-08-2023

21-08-2023

Receiving date:

Date report:

21-08-2023

Sample was taken by: Third party

Sample

Blueberries soil analysis

Sample NoG064061/01CropBLUEBERRIES

Analysis	Result	Guideline	Interpretation	Comments
рН	4.4	4.5	Slightly Low	Slightly low. An acidic environment will reduce soil nutrient availability and the efficiency of any applied fertilisers or organic materials. A sub optimum pH will also impact on soil microbial populations and rates of activity. Refer to lime requirement.
Phosphorus (ppm)	10	26	Low	(Index 1.0) Adequate fertiliser application is essential.
Potassium (ppm)	67	121	Low	(Index 1.1) Adequate fertiliser application is essential.
Magnesium (ppm)	54	120	Slightly Low	(Index 2.1) CONSIDER TREATMENT WITH MAGNESIUM.
Calcium (ppm)	332	1000	Very Low	CONSIDER TREATMENT.
Sulphur (ppm)	8	10	Slightly Low	Low priority on this crop. Other crops may be affected.
Manganese (ppm)	6	5	Normal	Adequate level.
Copper (ppm)	1.5	2.1	Low	Low priority on this crop. Other crops may be affected.
Boron (ppm)	0.49	2.10	Very Low	CONSIDER TREATMENT WITH BORON.
Zinc (ppm)	3.4	2.1	Normal	Adequate level.
Molybdenum (ppm)	0.01	0.80	Very Low	Low priority on this crop. Other crops may be affected.
Iron (ppm)	2114	50	Normal	Adequate level.
Sodium (ppm)	22	90	Very Low	Not a problem for this crop.
C.E.C. (meq/100g)	4.7	15.0	Very Low	Cation Exchange Capacity indicates a very low nutrient holding ability - soil applied nutrients will be readily leached. Where possible foliar applied nutrients should be recommended.
Lime Req. (t/ha)	7.0			

Using the Holistic approach

System Understanding - We have looked at all the systems to make sure they work together

- How does a plant work
- What does a plant need?
- Making sure the environment is correct
- What is the right growing media?
- What fertiliser to use?
- Healthy growing systems Biopesticides

Peat-free propagation

Less than 1% crop loss

Lavender (variety 'Seal') propagation in the Jiffy propagation mix with 2 g/L DCM ECOR 6.

At sale

Weaned off in July and given 2 liquid calcium feeds and topdressed with 2 grams per litre DCM Ecor 5.

Hidcote potted into peat-free 9cm pots after 5 weeks from plug.

Cuttings in preforma plugs

Clematis 'Princess Diana'

Hydrangea 'Pink Diamond'

Fuchsia 'Brutus'

2 liquid calcium feeds and top-dressed with 2 grams per litre DCM Ecor 5.

General potting mix with DCM

DCM ECOR 5 4 kg/m³ + Calcium Nitrate liquid feed

Peat-free mix with DCM and Osmocote

3kg/m³ DCM ECOR 5 + 3kg/m³ Osmocote 5, 8-9 month

Peat-free bed and pot bark with DCM

DCM ECOR 6 3 kg/m³ + liquid feed

Herbs

DCM ECOR 5 2kg/m³ + liquid feed

Peat-free Poinsettia's

DCM ECOR 5 2 kg/m³ + 1kg Cal/Mag

Peat-free Roses

Osmocote Exact 12/14month 3kg/m³ & top dressed twice with DCM ECOR 5 3 grams per litre over the season.

Peat-free Ericaceous mix with DCM

DCM ECOR 5 2kg/m³ + 2kg CRF, 12/14 month

Nursery

DCM ECOR 5 NPK 8-5-6, 2 kg/m³ DCM ECOR 3 NPK 11-0-3 2kg/m³, Osmocote Pro 12-14month 2kg/m³

Watercress

DCM ECOR 6 6kg/m³, DCM Vivikali 2.5kg/m³, DCM Micro mix 250grams/m³

Organic grown crops using only DCM

DCM ECOR 3 NK 11-3, DCM Vivikali NK 2-20, DCM Micro Mix

Organic grown crops using only DCM

DCM ECOR 1 NPK 9-5-3, DCM Vivikali NK 2-20, DCM Micro Mix

Port Laurel field grown using DCM/mineral fertilisers

DCM MIX 5 NPK 10-4-8 applied twice in growing season

Tree planting in soil with DCM

DCM Mix 5 50 grams per tree, DCM Vivisol 25 grams per tree

Crop Focus for 2025

Healthy Systems

Good nutrition

- Healthy roots
- Strong plants
- Good growth

Healthy plants

- Good uptake of fertilizer
- Disease/Pest Management
- Helps biofungicide programmes

